

Technical Note

AN-X2-AB-DHRIO Remote I/O to EIP Drives Configuration

Document Code: TN171005-000 Author: Andy Koenig Date: January 18, 2017

Asia Pacific

Malaysia Office Phone: +603.7724.2080 asiapc@prosoft-technology.com Languages spoken: Chinese, English

China Office Phone: +86.21.5187.7337 asiapc@prosoft-technology.com Languages spoken: Chinese, English

Europe, Middle East, Africa

France Office Phone: +33 (0)5.34.36.87.20 europe@prosoft-technology.com Languages spoken: French, English

Middle East and Africa Phone: +971.(0)4.214.6911 mea@prosoft-technology.com Languages spoken: English, Hindi

North America

Corporate Headquarters Phone: +1 661.716.5100 support@prosoft-technology.com *Languages spoken: English, Spanish*

Latin America

Brazil Office Phone: +55.11.5083.3776 brasil@prosoft-technology.com Languages spoken: Portuguese, English

Mexico and Central America Office Phone: +52.222.3.99.6565 soporte@prosoft-technology.com Languages spoken: Spanish, English

Regional Office Phone: +1.281.298.9109 latinam@prosoft-technology.com Languages spoken: Spanish, English

ASIA PACIFIC | AFRICA | EUROPE | MIDDLE EAST | LATIN AMERICA | NORTH AMERICA

1	Purpose		3
2	0	und	
3	0	ration Process	
3		nfigure AN-X2 Mode and Ethernet	
	3.1.1	Open AN-X2 Configuration	
	3.1.2	Select Connection Type	
	3.1.3	Enter Hostname	
	3.1.4	Enter Static IP	
	3.1.5	Select Firmware Type DRV-04	
	3.1.6	Submit Configuration	
-	3.1.7 3.2 Cor	Note Firmware Version	
-	3.2.1	Select Baud Rate	
	3.2.1	Select Optional MapReport	
	3.2.2	1	
		Select Optional FaultRioRacks	
	3.2.4	Select Optional UnschMsgDebug.	
	3.2.5	Select Optional LedIgnXxx Inhibits	
	3.2.6	Define Remote I/O Rack in the AN-X2	
	3.2.7	Define Optional btw/btr Block Transfers	
	3.2.8	Define Drive IpAddr	
	3.2.9	Select Optional Unicast	
	3.2.10	Define Drive RPI	
	3.2.11	Identify EthDef and RioDef Configuration File Templates	12
	3.2.12	Identify EndRack	12
	3.2.13	Define Additional Racks	12
3		nfigure EtherNet/IP Definition File	
	3.3.1	Define Scheduled Connection AssemIns, O_T_ConnPt, T_O_ConnPt	14
	3.3.2	Define Drive Key	
	3.3.3	Define the Drive MinRpi	
	3.3.4	Define Optional Unscheduled Messaging UnSchMsg	16
	3.3.5	Define Optional Unscheduled Messaging UnSchMsgBT	19
	3.3.6	Define Drive Inputs and Outputs	22
	3.3.7	Determine Inputs and Outputs Sizes	
3	3.4 Cor	nfigure RIO Definition File	. 30
	3.4.1	Define RIO Inputs	31
	3.4.2	Define RIO Outputs	32
	3.4.3	Scale Inputs/Outputs As Needed	33
3		wnload Configured Files to the AN-X2	
	3.5.1	Download EtherNet/IP Definition File	
	3.5.2	Download RIO Definition File	
	3.5.3	Download Main Definition File	
	3.5.4	Restart the AN-X2	
		re EthDef.csv	
4		ix: Things to check	
5	Append	ix: Wireshark	31

1 Purpose

This document describes the process for configuring an AN-X2-AB-DHRIO gateway to connect Allen-Bradley Remote I/O to up to four EtherNet/IP enabled drives.

This document references Allen-Bradley drives, but other drives and some types of robots might also use the AN-X2-AB-DHRIO gateway. The gateway has several modes of operation, including the Drives mode described here. (Some robots may require the gateway in a different mode.)

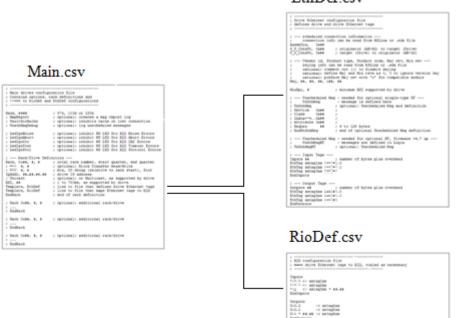
This procedure assumes knowledge of the PLC application, Remote I/O and configuration details of the drive.

For physical connections, further configuration details and troubleshooting, refer to the *AN-X2-ABDHRIO Remote I/O Drive Interface User Manual*.

2 Background

The AN-X2-AB-DHRIO gateway supports upgrading legacy Allen-Bradley drives on Remote I/O to new EtherNet/IP enabled drives. The gateway maps Drive tags into a RIO adapter. Your drive documentation should provide a list of available tags.

Word	Output I/O	Word	Input I/O
0	Logic Command	0	Pad Word
1	Reference	1	Pad Word
2	Datalink In A1	2	Logic Status
3	Datalink In A2	3	Feedback
4	Datalink In B1	4	Datalink Out A1
5	Datalink In B2	5	Datalink Out A2
;	Datalink In C1	6	Datalink Out B1
7	Datalink In C2	7	Datalink Out B2
3	Datalink In D1	8	Datalink Out C1
9	Datalink In D2	9	Datalink Out C2
		10	Datalink Out D1
		11	Datalink Out D2

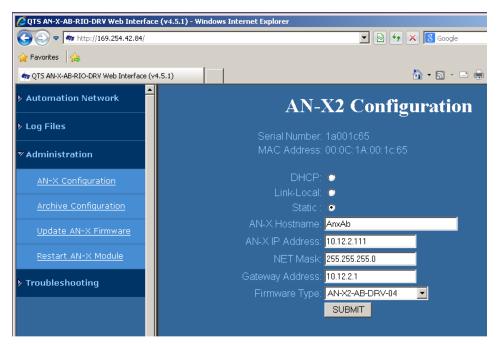

The AN-X2 can map 8 words in and 8 words out per drive, up to 4 drives. The inputs map to the processor's I1 data file. The outputs map to the processor's O0 data file. Additional data can be accessed using block transfers.

-0

🖃 🧰 Project 📃										
⊕ elp	🔀 File 00	(dec) OUT	PUT						- O ×	1
	Offset	0	1	2	3	4	5	6		
- 1 Controller Properties		-				4				
	0:000	0	0	0	0	0	0	0	0 🔺	
	0:010	0	0	0	0	0	0	0	0	
🕀 🕂 Channel Configuration	0:020	🔁 File I1 (de	c) INPI	Л						- O ×
🕀 📄 Passwords and Privileges	0:030			1			0		-	
🖃 🧰 Program Files	0:040	Offset	0	1	2	3	4	5	6	7
SYS0-		1:000	0	0	0	0	0	0	0	0 🔺 📗
📈 LAD 2 -	0:050	I:010	0	0	0	0	0	0	0	0
Data Files	0:060	1:020	0	0	0	0	0	0	0	0
	0:070	I:030	0	0	0	0	0	0	0	0
	0:100	1:040	0	0	0	0	0	0	0	0
🚺 II - INPUT	0:110	I:050	0	0	0	0	0	0	0	0
STATUS	0:120	I:060	0	0	0	0	0	0	0	0
🚺 B3 - BINARY										
14 - TIMER		I:070	0	0	0	0	0	0	0	0 —

The AN-X2 is configured with three text files.

- The Main file defines the adapter racks, baud and options, and identifies the EtherNet/IP and RIO configuration files for each drive.
- The EthDef file defines the Drive input and output tags, connection and messages. Preconfigured EthDef files are available for many Allen-Bradley drives.
- The RioDef file defines the tag mapping from EtherNet/IP to RIO, scaling tags as needed.


EthDef.csv

3 Configuration Process

3.1 Configure AN-X2 Mode and Ethernet

A web-browser is used for the initial configuration. An un-configured AN-X2 has a default IP address of 169.254.42.84.

If the AN-X2 has an unknown configuration, please consult the user manual "Reconfiguring an AN-X from an Unknown State".

3.1.1 Open AN-X2 Configuration

Open a web-browser and enter the current AN-X2 IP in the browser address.

3.1.2 Select Connection Type

Select the *Static* IP type in most cases. Your network admin can assign a unique IP address for the AN-X2.

If you select DHCP, a DHCP server assigns an IP address each time the AN-X2 powers up. Unless you have control of the DHCP server, that server can assign a different IP address each time. To find the address assigned, view the DHCP server. When submitting the changes, if a DHCP server is not found, the AN-X2 reverts to the default link-local address and repeatedly flashes the SYS (or MS) LED 3 reds followed by a pause.

If you select Link-local, the fixed link-local address, 169.254.42.84, is used. The AN-X2 must be on the same subnet as the computer to use the link-local IP address. It cannot be connected through a router. Link-local is typically used only for configuration.

3.1.3 Enter Hostname

Enter a Hostname for the AN-X2. This name is used internally by AN-X2 and may be used to identify the AN-X2 if you have a DNS server on your network. The name can be from 1 to 30 characters long.

3.1.4 Enter Static IP

If you select static IP address, enter the IP address, netmask and default gateway for your network. You must enter a valid default gateway address even if there is no device at the gateway address on the network.

Important: If you are connecting AN-X2 to an existing Ethernet network, consult the network administrator to obtain a static IP address.

- 3.1.5 Select Firmware Type DRV-04 From the dropdown list, select the Drive firmware AN-X2-AB-DRV04.
- 3.1.6 Submit Configuration

After editing parameters, click the SUBMIT button to write the configuration to the AN-X2. The changes will take effect once the AN-X restarts.

Click Continue to restart the AN-X2. Wait until the AN-X2 has completely restarted before continuing.

If you have changed the IP address, enter the new IP address in the browser's address field.

If you have changed the Firmware Type, flush the browser cache (delete browser history) to force the browser to reload the new AN-X2 page. (Ctrl-F5 will reload pages in Firefox or Internet Explorer, Shift-F5 will reload pages in Google Chrome.)

3.1.7 Note Firmware Version

Some features are dependent on the version. The version appears in the tab or, on some browsers, it appears when you hover over the tab.

🖉 QTS AN-X-AB-RIO-DRV Web Interface (v4.5	.1) - Windows Internet Explorer
🖕 Favorites 🛛 🖕	
mg QTS AN-X-AB-RIO-DRV Web Interface (v4.5.1)	
Automation Network	QTS AN-X-AB-RIO-DRV Web Interface (v4.5.1) http://10.12.2.111/
♭ Log Files	AN-X-ABRIO-DRV
Administration	Introduction:
≻ Troubleshooting	This is the main configuration screen for the AN-X AB RI
	Directions:

3.2 Configure Main Definition File

The Main configuration file defines the Remote I/O logical rack(s) in the AN-X2, baud rate and additional options (described below). The rack definitions include references to the RIO and EtherNet/IP configuration files. A semi-colon ";" indicates a comment. Any text following a semi-colon is ignored by the AN-X2.

The configuration files are best edited in Notepad. Editing in Excel will introduce redundant (but harmless) commas throughout the file. The filename can be changed, but the extension must remain .csv.

Main.csv:

;; Main drives configu ; Contains options, r ; links to RioDef and ;	
Baud, #### ; MapReport ; FaultRioRacks ; UnschMsgDebug	; 57k, 115k or 230k ; optional: creates a map report log ; optional: inhibits racks on lost connection ; optional: log unscheduled messages
<pre>; LedIgnNoise ; LedIgnAbort ; LedIgnCrc ; LedIgnTout ; LedIgnPrcl</pre>	<pre>; optional: inhibit NS LED for RIO Noise Errors ; optional: inhibit NS LED for RIO Abort Errors ; optional: inhibit NS LED for RIO CRC Errors ; optional: inhibit NS LED for RIO Timeout Errors ; optional: inhibit NS LED for RIO Protocol Errors</pre>
<pre>; Rack/Drive Defi Rack, 0o##, #, # ; btr, #, # ; btw, #, # IpAddr, ##.##.##.## ; Unicast RPI, ## Template, EthDef Template, RioDef EndRack</pre>	<pre>nition ; octal rack number, start quarter, end quarter ; optional: Block Transfer Read/Write ; btx, IO Group (relative to rack start), Slot ; drive IP address ; optional: as supported by drive ; 1 to 750ms, as supported by drive ; link to file that defines drive Ethernet tags ; link to file that maps Ethernet tags to RIO ; end of rack definition</pre>
; Rack 0o##, #, # ; ; EndRack	; optional: additional rack/drive
; Rack 0o##, #, # ; ; EndRack	; optional: additional rack/drive
; Rack 0o##, #, # ; ; EndRack	; optional: additional rack/drive

- 3.2.1 Select Baud Rate
 Set the RIO baud rate of 57k, 115k or 230k. A comma separates the keyword Baud and rate value.
 Baud, 57k
- 3.2.2 Select Optional MapReport

Include the MapReport option (remove the preceding semi-colon) to generate a data map report. MapReport

This report can be used for documentation, debugging and technical support. The resulting *MapReport.log* is available in the AN-X2 web interface under *View All Logs*.

3.2.3 Select Optional FaultRioRacks

Include the FaultRioRacks option (remove the preceding semi-colon) to allow the PLC to indicate EIP network connection problems. FaultRioRacks

TIP: Leave FaultRioRacks commented until communication between the rack and the RIO scanner is initially established. Then enable the option as desired.

FaultRioRacks causes the AN-X2 to initially inhibit its emulated remote I/O racks. When the AN-X gets a good connection with the Ethernet drive, inhibit is removed from the associated rack. If the AN-X2 loses the EIP connection, the rack is inhibited again. This allows the PLC program to monitor the remote rack status and determine if the drive is communicating on the EIP network. For example, a PLC5 IO-status table is showing an EIP disconnect:

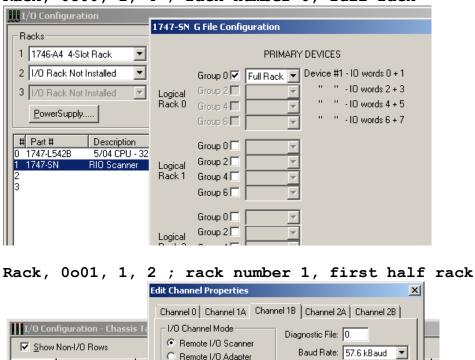
🚟 File N9 (dec)) IOST	TAT I	/O Status	5 File						
Offset	0	1	2	3	4	5	6	7	8	9
N9:0	0	0	(3)	0	0	0	0	0	0	0
N9:10	0	0	0	Rack 1	0	0	0	0	0	0
N9:20	0	0	0	каск і	., grou	nbe 1-	z raun	دed	0	0
N9:30	0	0	0	0	0	0	0	0	0	0
N9:40	0	0	0	0	0	0	0	0		
N9:0								Radi	x Decima	
Symbol: Desc: N9		Proper	rties		<u>U</u> sa <u>c</u>	je				ins: 10 💌

- 3.2.4 Select Optional UnschMsgDebug Available in v4.7 and later firmware (section 3.1.7). Include the UnschMsqDebuq option (remove the preceding semi-colon) to write the contents of unscheduled messages to the Ethernet/IP log. UnschMsgDebug UnschMsgDebug can help with debugging unscheduled messages. The contents of the unscheduled message Requests and Responses are written to the Ethernet/IP log, showing exactly what the AN-X is sending and what the drive is returning.
 - 3.2.5 Select Optional LedIgnXxx Inhibits

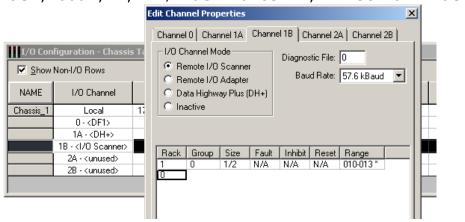
LedIgnPrcl

Available in v4.7 and later firmware (section 3.1.7). The AN-X2 module may see errors on the RIO network that do not affect the operation of the AN-X2, but that cause the NS LED to blink or stay red. (For example, the AN-X2 might see a corrupt message whose recipient cannot be identified. This might be a message to the AN-X2 and a legitimate error, or it might be a nuisance error.)

To stop the LED flashing nuisance errors, include the appropriate options. LedIgnNoise LedIgnAbort LedIgnCrc LedIgnTout


Generally, only LedIgnNoise, LedIgnAbort and LedIgnCrc will be needed. Use discretion when disabling any NS LED error indications.

Diagnostic counters will continue to increment for all errors. This option only suppresses the LED error indication.


3.2.6 Define Remote I/O Rack in the AN-X2

Drive definitions begin with a line that contains the keyword Rack, and end with a line that consists of just the keyword EndRack.

Define the rack number and rack size to match the PLC. Rack numbers are octal.

Rack, 0000, 1, 4 ; rack number 0, full rack

The definition consists of the keyword Rack, the rack number in octal $0 \circ xx$ (xx is 0-76), the start quarter (1-4) and the end quarter (1-4). Commas separate the keyword and each element. The end quarter must be greater than or equal to the start quarter.

3.2.7 Define Optional btw/btr Block Transfers Optional unscheduled data transfers between the PLC and AN-X2 are performed using Block Transfer Read and Write instructions.

```
btw, 7, 0
btr, 7, 1
```

Block transfer definitions consist of the block transfer keyword (read or write), the *relative* I/O group (0 to 1 for quarter rack, 0 to 3 for half rack, or 0 to 7 for full rack) and the slot (0 or 1). Commas separate the keyword and elements.

Important: The location of the block transfer must not overlap discrete remote I/O output data.

The I/O group is relative to the start of the rack. If a rack is defined half rack starting at the third quarter, an I/O group number 3 in the block transfer definition means actual I/O group 7 in the rack.

Rack, Oo	01, 3	3,4;	rac]	k numb	per 1,	, seco	ond ha	alf
btw, 3,	0	;	actı	al gi	roup [7		
Quarter		1	4	2		3	4	4
Relative					0	1	2	2
I/O group					0	1	2	3
Actual	0	1	2	3	4	5	6	7
I/O group	0	1	Z	3	4	5	U	/

Unscheduled data transfers between the AN-X2 and Drive are performed using unscheduled messages. Message definition is discussed in EtherNet/IP Definition File, sections 3.3.4 and 3.3.5. Examples are included in those sections.

Define Drive IpAddr 3.2.8

> Specify the Drive's IP Address using the keyword IpAddr. A comma separates the keyword and address.

IpAddr, 169.254.42.84 ; but your IP address

3.2.9 Select Optional Unicast

Include the Unicast option to make a unicast connection to the Ethernet drive.

Unicast

The default is otherwise multicast. Unicast is preferred, but not all drives support unicast.

3.2.10 Define Drive RPI

Specify the drive RPI in milliseconds using the keyword RPI. A comma separates the keyword and RPI value. The range is from 1 (or the MinRpi supported by the drive, whichever is larger) to 750ms.

RPI, 50

3.2.11 Identify EthDef and RioDef Configuration File Templates Specify the filenames containing the drive Ethernet tags and the Ethernet-to-RIO tag mapping. Use the keyword Template. A comma separates the keyword and filename.

Template,	EthDef	; drive Ethernet tags	
Template,	RioDef	; map Ethernet tags to H	RIO

Do not include the .csv file extension. The filenames can be changed.

EthDef is discussed in section 3.3. RioDef is discussed in section 3.4.

3.2.12 Identify EndRack

EndRack denotes the end of the rack definition. **EndRack**

3.2.13 Define Additional Racks

Repeat the rack definition for up to three additional racks/drives.

The rack locations must not overlap. The following is acceptable:

Rack, 0001, 1, 2 ; rack 1, first half Rack, 0001, 3, 4 ; rack 1, second half Rack, 0002, 1, 2 ; rack 2, first half Rack, 0002, 3, 4 ; rack 2, second half

The same EthDef and RioDef templates can be used for each rack.

btr/btw are rack-relative, so can be identical for each rack.

3.3 Configure EtherNet/IP Definition File

The EthDef configuration file defines drive connection and keying parameters, the drive input and output tags, and optional unscheduled messaging. A semi-colon ";" indicates a comment. Any text following a semi-colon is ignored by the AN-X2.

The configuration files are best edited in Notepad. Editing in Excel will introduce redundant (but harmless) commas throughout the file. The filename can be changed, but must match the name used in main.csv. The file extension must remain .csv.

EthDef.csv:

```
: ------
; Drive Ethernet configuration file
; defines drive and drive Ethernet tags
; --- scheduled connection information ---
; connection info can be read from .eds file
AssemIns, Ox##
O_T_ConnPt, 0x## ; originator (AN-X2) to target (Drive)
T_O_ConnPt, 0x## ; target (Drive) to originator (AN-X2)
; --- Vendor id, Product type, Product code, Maj rev, Min rev ---
    keying info can be read from RSLinx or .eds file
;
     Optional: comment out (;) to disable keying
;
;
     optional: preface Maj rev with "c" for compatible module
Key, ##, ##, ##, c##, ##
MinRpi, #
                    ; minimum RPI supported by drive
; --- Unscheduled Msg - needed for optional single-type BT ---
; UnSchMsg - message is defined here
                    ; optional: Unscheduled Msg and definition
; UnSchMsg
; Service 0x##
; Class 0x##
                   ;
                    ;
; Instance 0x## ;
; Attribute 0x## ;
; ReqLen ## ; 3 to 126 bytes
; EndUnSchMsg ; end of optional Unscheduled Msg definition
; --- Unscheduled Msg - needed for optional BT, firmware v4.7 up ---
    UnSchMsgBT - messages are defined in Logix
;
; UnSchMsgBT ; optional: Unscheduled Msg
; --- Input Tags ---
                    ; number of bytes plus overhead
Inputs ##
EthTag DriveStatus_tag00 int[#].0
EthTag DriveStatus_tag01 int[#].1
                   int[#]
EthTag Feedback
EndInputs
; --- Output Tags ---
Outputs ## ; number of bytes plus overhead
EthTag LogicCommand tag00 int[#].0
EthTag LogicCommand tag01 int[#].1
EthTag Reference
                      int[#]
EndOutputs
```

Important: Preconfigured EtherNet/IP Definition Files are available for various drives. These are included in the Drive Files <u>download</u> on the <u>AN-X2-AB-DHRIO</u> web page. This section describes how to create a new EtherNet/IP Definition file if one is not already available.

A Note about Wireshark: Wireshark software is a network protocol analyzer available at wireshark.org. Wireshark can be an invaluable aid in determining your EIP configuration. Wireshark is described in the appendix.

3.3.1 Define Scheduled Connection AssemIns, O_T_ConnPt, T_O_ConnPt. Use the keywords AssemIns, O_T_ConnPt (output) and T_O_ConnPt (input) as shown. A comma separates the keywords and values.

AssemIns,	0x04								
O_T_ConnPt,	0x15	;	Origina	tor	(AN-	-X)	to	Target	
T O ConnPt,	0x47	;	Target	(dri	.ve)	to	Ori	iginato:	r

Specify the scheduled connection as you would for any module, like:

уре:	ETHERNET-MODULE Generic Ether	met Module			
endor:	Allen-Bradley				
arent:	Slot1_EN2T	- Connection Para	motore		
la <u>m</u> e:)escri <u>p</u> tion:	VFD1		Assembly Instance:	Size:	
esch <u>e</u> ton.	Yaskawa_A1000 0x47		71	2	🔷 (1 6-bit)
	0x15	O <u>u</u> tput:	21	2	≑ (1 6-bit)
omm <u>F</u> ormat:	Data-INT	Configuration:	1	0	(8-bit)
Address / Ho	ost Name	Soundarous			· (* 814
IP Addres	ss: 192 . 168 . 1 . 11	<u>S</u> tatus Input:			
© <u>H</u> ostNan	ne:	Status Output:			

Connection details can be found in the drive's EDS file or user manual. If multiple connections are available, pick the connection that provides the specific data required, like *Basic Speed Control* or *Extended Speed Control*.

```
Drive EDS file
. . .
[Device]
       VendCode = 0x2C
                          :
       ProdType = 0x2
                          ;
                                AssemIns (hex)
       ProdCode = 0x9062 ;
       MajRev = 0x2
                          ;
                                    O T ConnPt (hex)
       MinRev = 0x33
                          ;
. . .
                                        T O ConnPt (hex)
[Connection Manager]
       Connection1 =
               "20 04 24(04)2C(15)2C(47")
                                           ;
        . . .
```

3.3.2 Define Drive Key

Specify drive keying details using the keyword Key. Commas separate the keyword and values.

;	VendCode,	<pre>ProdType,</pre>	<pre>ProdCode,</pre>	MajRev,	MinRev
Key,	0x2C,	0x2,	0x9062,	c2,	33

A "c" before MajRev indicates a compatible version module on some drives. Version "..., 0, 0" indicates no version keying on some drives. Though not recommended, the Key line can be commented out ";" to indicate no keying. (This can help in troubleshooting.) Keying details can be found in the drive's EDS file.

··· Drive EDS file
<pre>[Device] VendCode = 0x2C ; ProdType = 0x2 ; ProdCode = 0x9062 ; MajRev = 0x2 ; MinRev = 0x3 ;</pre>
[Connection Manager] Connection1 =
"20 04 24 04 2C 15 2C 47" ;

Keying information can also be seen in RSLinx. Right-click a module and select *Device Properties*. This drive is Key, 46, 2, 701, 3, 16.

🗞 RSLinx Classic Gateway - [RSWho - 1]		
💑 File Edit View Communications Station DDE/OPC	Security Window Help	
≥ # \$5 ® ® 1 ⁄ №		
	Product Code: 701 Revision: 3.016 Serial Number: 0005FD418 EDS File Name: 0002E000202BD03\$\$EDS Faults:	? X
	<u>Close</u> Help	
I		

3.3.3 Define the Drive MinRpi

Specify the Drive's minimum RPI using the keyword MinRpi. A comma separates the keyword and value. MinRpi, 1

The RPI specified in the Main Definition File cannot be less than the minimum supported by the drive. Consult the drive manual for RPI.

3.3.4 Define Optional Unscheduled Messaging UnSchMsg

To specify optional unscheduled messaging, edit the message format and remove the semi-colon preceding the lines.

```
UnSchMsg
Service 0x4B
Class 0x93
Instance 0x00
Attribute 0x00
ReqLen 30 ; 3 to 126 bytes
EndUnSchMsg
```

UnSchMsg allows a single type of unscheduled message to transfer data between the AN-X2 and drive.

To use unscheduled messaging, btr/btw must be included in the Main Definition File (section 3.2.7).

Starting with AN-X2 firmware version 4.7 (section 3.1.7), UnSchMsgBT is available for multiple message types. Do not use UnSchMsg if you are using UnSchMsgBT (section 3.3.5).

Consult your drive manual for message formats. Define Service, Class, Instance, and Attribute as you would any RSLogix5000 CIP Generic message. *Scattered Read Message* for a drive with a 20-COMM-E is shown here.

Message Configuration - Scattered	I_Read_Message	
Configuration Communication Tag		
Message Type: CIP Generic	•	
Service Custom	Source Element:	Scattered_Read_Rec_
Service 4b (Hex) Class: 93	Source Length: (Hex) Destination	30 🔆 (Bytes) Scattered_Read_Re: 🚽
Instance: 0 Attribute: 0	(Hex)	New Tag

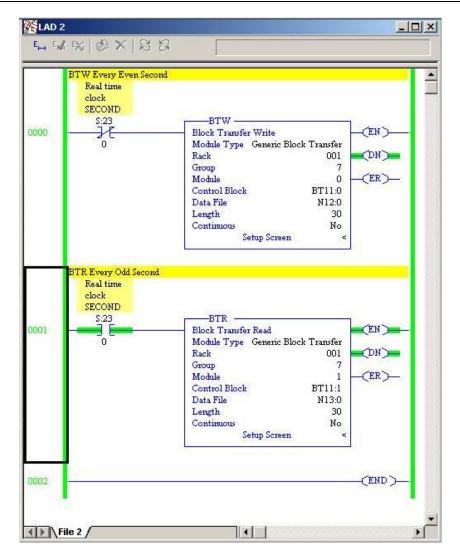
Define ReqLen (requested length). For this example, transferring a single drive parameter requires 6 bytes. To transfer 5 parameters requires 30 bytes.

The maximum number of parameters you can transfer in a single block transfer is 21, or 126 bytes.

For the *Scattered Read Message*, the PLC must execute a block transfer write containing a list of parameters to be read from the Ethernet drive.

For example, to read parameters 1, 2, 3, 4, and 5 from a drive, the block transfer write has length 15 (30 bytes) and consists of 5 blocks of 3 words. Each block consists of the parameter number and two placeholders.

 $1\,0\,0\,2\,0\,0\,3\,0\,0\,4\,0\,0\,5\,0\,0$


🖀 File N12 (hex)	-	<u></u>							
Offset	0	1	2	3	4	5	6	7	8	9
N12:0	1	0	0	2	0	0	3	0	0	4
N12:10	0	0	5	0	0	0	0	0	0	0
N12:20	0	0	0	0	0	0	0	0	0	0
har an	~	្ត	2	~	~	~	~	2	2	~

The AN-X sends a Scattered-Read message to the Ethernet drive including the list of parameters. When the AN-X receives a reply, it stores the data in the block transfer read data area.

The PLC must then issue a block transfer read request to retrieve the data. The length is again 15 (30 bytes) and consists of 5 blocks of three words. Each block contains the parameter number, the parameter's least significant word and the parameter's most significant word.

🖉 File N13 ((hex)							=		
Offset	0	1	2	3	4	Ś	6	7	8	9
N13:0	1	3	FC	2	1	EC	3	1	14	4
N13:10	2	9A	5	4	D4	0	0	0	0	0
N13:20	0	0	0	0	0	0	0	0	0	0
	~	2	ੁ	~	~	្ឋ	~	្ត	<u>_</u>	

1 LSW MSW 2 LSW MSW 3 LSW MSW 4 LSW MSW 5 LSW MSW

Important: Again, consult your drive manual for message formats. For example, this same *Scattered Read Message* would be different for a drive with a 20-750-ENETR, with Service **4D** and **8** bytes per parameter.

3.3.5 Define Optional Unscheduled Messaging UnSchMsgBT To specify optional unscheduled messaging, remove the semi-colon preceding the line: UnSchMsgBT

UnSchMsgBT allows multiple types of unscheduled messages to transfer data between the AN-X2 and drive.

To use unscheduled messaging, btr/btw must be included in the Main Definition File (section 3.2.7).

UnSchMsgBT is available in AN-X2 modules with firmware version 4.7 or later. For earlier version firmware, use UnSchMsg (section 3.3.4). Do not use UnSchMsgBT if you are using UnSchMsg or firmware prior to 4.7.

Consult your drive manual for message formats. Define your message as you would any RSLogix5000 CIP Generic message. *Get Attribute Single, Identity Object* for a drive with a 20-COMM-E is shown here.

N	lessage Co	nfiguration - MS	G_AW1_VF	D				X
	Configuratio	on* Communicat	ion Tag					
	Message	Туре: С	IP Generic			-		
	Service	Get Attribute Sing	le	•	Source		-	
	Тұре:				Source Leng	th: 0	(Bytes)	
	Ser <u>v</u> ice Code:	e (Hex) <u>C</u>	lass: 1	(Hex)	Destination	VFD1_/		-
	Instance:	1 Attri <u>b</u>	ute: 3	(Hex)	Element:	Ne <u>w</u> 1	Гад	
Þ								
le	lentity Obje	ct	Class Code					
	lentity Obje	CI CI		-				
			Hexadecimal	Decimal				
			0x01	1				
			Services					
				Implemente	d for:			
			Service Code	Class	Instance	Service Name		
			0x0E	Yes	Yes	Get_Attribute_Sir	ngle	
			Instances					
			Instance	Description				
			1	Host				
			Instance A	ttributes				
					Name	Data Type	Description	
			3	Get	Product Code	WORD	Number identifying product nar	ne and rating

Unlike UnSchMsg, which is defined fully in EthDef.csv, UnSchMsgBT is defined in the PLC. The Service, Class, Instance, Attribute and Request Length are specified in the message request data at Offsets 0 through 3. The arguments are mapped as follows:

File N12	(hex)		<u></u>				Sources a	_		
Offset	0	1	2	3	4	5	6	7	8	9
N12:0	E00	1	1	- 3	0	0	0	0	0	0
N12:10	/ 0	/0	þ	0	0	0	0	0	0	0
N12:20 Sr	vce lo c	lass	0	0	0	0	0	0	0	0
N12:30	RegLen	0	0	0	0(3=	ProdC	ode)	0	0	0
N12:40	0	0	0	0	0	0	0	0	0	0
N12:50	0	0	0	0	0	0	0	0	0	0

For this example, N12 is used for a CIP message request.

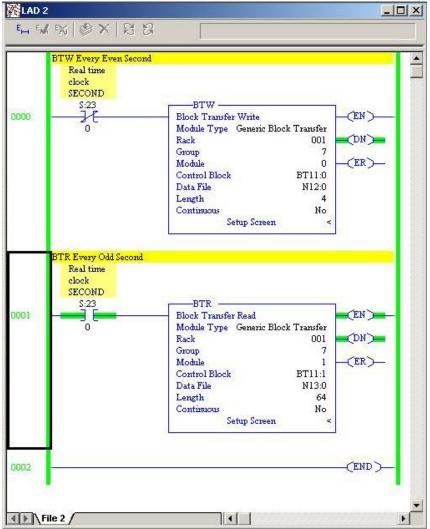
N12:0 Low Byte ... Write Data Length in bytes (0 in this example)

N12:0 Hi ByteCIP Service Code (0E in this example)

- N12:1CIP Class
- N12:2CIP Instance
- N12:3CIP Attribute

N12:4 - n.....Write Data (none in this example)

🖀 File N13 ((hex)							-		
Offset	0	1	2	3	<u>_4</u>	5	6	7	8	.9
N13:0	0	2	51	0	0	0	:0	0	0	0
N13:10	6	d	0	0	0	0	0	0	0	0
N13:20 👝	nSts	0	0	Q	0	0	0	0	0	0
m	0	-		0	0	0	_ ^	•	~	•
		Rspl	.en	R	spDat	a (Prod	dCode)			


For this example, N13 is used for the CIP message response. N13:0General Status (0xffff=-1=Busy, 0x0000=No Error) N13:1Response Data Length OR ExtSTS if General Status is not 0 N13:2 - 63CIP Response Data

The data file length must be enough to read the 2-word status header plus the reply data.

General and Ext Status should be checked before processing the response data.

In the example, reading the Identity Object, the return size is variable so to be safe we read extra data in the BTR as shown:

3.3.6 Define Drive Inputs and Outputs

Consult the drive manual for the list of available data for your drive. It might look like the following:

Table 5.B ControlLogix Controller I/O Image for Drives with 16-bit Reference/ Feedback and 32-bit Datalinks – Using Generic Profile

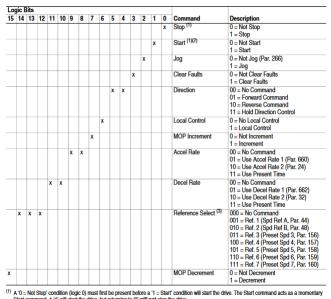
These products include the following:

PowerFlex 700L drives with 700 control

PowerFlex 700 drives with vector control
 PowerFlex Digital DC drives

Word	Output I/O	Word	Input I/O
0	Logic Command	0	Pad Word
1	Reference	1	Pad Word
2	Datalink In A1 (LSW)	2	Logic Status
3	Datalink In A1 (MSW)	3	Feedback
4	Datalink In A2 (LSW)	4	Datalink Out A1 (LSW)
5	Datalink In A2 (MSW)	5	Datalink Out A1 (MSW)
6	Datalink In B1 (LSW)	6	Datalink Out A2 (LSW)
7	Datalink In B1 (MSW)	7	Datalink Out A2 (MSW)
8	Datalink In B2 (LSW)	8	Datalink Out B1 (LSW)
9	Datalink In B2 (MSW)	9	Datalink Out B1 (MSW)
10	Datalink In C1 (LSW)	10	Datalink Out B2 (LSW)
11	Datalink In C1 (MSW)	11	Datalink Out B2 (MSW)
12	Datalink In C2 (LSW)	12	Datalink Out C1 (LSW)
13	Datalink In C2 (MSW)	13	Datalink Out C1 (MSW)
14	Datalink In D1 (LSW)	14	Datalink Out C2 (LSW)
15	Datalink In D1 (MSW)	15	Datalink Out C2 (MSW)
16	Datalink In D2 (LSW)	16	Datalink Out D1 (LSW)
17	Datalink In D2 (MSW)	17	Datalink Out D1 (MSW)
		18	Datalink Out D2 (LSW)
		19	Datalink Out D2 (MSW)

Table 4.B Drives with 16-bit Reference/Feedback and 32-bit Datalinks


These products include the following:

- PowerFlex 700 drives with vector control
 PowerFlex Digital DC drives
- PowerFlex 700L drives with 700 control

Logic	Ref/Fdbk	Dat	alink	s (32	-bit)	User Configured Settings								
Command/ Status	(16-bit)			•		Size in	Words	Par. 23 -	Par. 35 -	Par. 36 -				
otatuo		A	B	C	D	Input	Output	[DPI I/O Cfg]	[M-S Input]	[M-S Output]				
 	~					4	2	0 0001	0 0001	0 0001				
 	~	~				8	6	0 0011	0 0011	0 0011				
 	~	~	•			12	10	0 0111	0 0111	0 0111				
~	~	~	~	~		16	14	0 1111	0 1111	0 1111				
~	~	~	~	~	~	20	18	1 1111	1 1111	1 1111				

PowerFlex Digital DC Drives Logic Command Word

(1) A 10- Not Stop' condition (logic) must first be present before a '1 = Start condition will start the drive. The Start command acts as a momentary Start command. A '1' will start the drive, but returning to '0' will not stop the drive. (2) This Start will not function if a digital input (parameters 133...144) is programmed for 2-Wire Control (option 5 'Run', 6 'Run Forward', or 7 'Run Reverse').

(3) This Reference Select will not function if a digital input (parameters 133...144) is programmed for 'Speed Sel 1, 2, or 3' (option 17, 18, or 19). Note that Reference Select is 'Exclusive Ownership' – see drive User Manual for more information.

Logic Status Word

	gic E																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Status	Description
															X	Ready	0 = Not Ready (Par. 1403) 1 = Ready
														x		Active	0 = Not Active (Running) 1 = Active
													x			Command Direction	0 = Reverse 1 = Forward
												x				Actual Direction	0 = Reverse 1 = Forward
											x					Accel	0 = Not Accelerating 1 = Accelerating
										x						Decel	0 = Not Decelerating 1 = Decelerating
									x							Alarm	0 = No Alarm (Par. 1380) 1 = Alarm
								x								Fault	0 = No Fault (Par. 1351) 1 = Fault
							x									At Speed	0 = Not At Reference 1 = At Reference
				x	x	x										Local Control ⁽¹⁾	000 = Port 0 (TB) 001 = Port 1 010 = Port 2 011 = Port 3 100 = Port 4 101 = Port 5 110 = Reserved 111 = No Local
x	x	x	x													Reference Source	0000 = Spd Rei A Auto (Par. 44 0001 = Spd Rei B Auto (Par. 48 0011 = Preset Spd 2 Auto 0010 = Preset Spd 3 Auto 0100 = Preset Spd 3 Auto 0101 = Preset Spd 3 Auto 0010 = Term Bik Manual 1001 = DPI 1 Manual 1011 = DPI 3 Manual 1101 = DPI 3 Manual 1101 = DPI 4 Manual 1110 = DPI 4 Manual 1110 = DPI 4 Manual 1111 = Jog Rei

(1) See 'Owners' in drive User Manual for further information.

From the available drive data, construct a list of tags. The Input tag list begins with the keyword Inputs followed by the size of the tag list *including overhead*. Determining size is discussed in the next section. The list ends with the keyword EndInputs.

Tag definitions consist of the keyword EthTag, a tag name (up to 63 characters), the data type and location. The location is expressed as an offset into the table of Ethernet data. The location is enclosed in square brackets. EthTag DriveStatus Ready int[0].0

The data type can be int, dint or real.

To define a tag for a bit within an int or a dint, append a dot and then the bit number in decimal, 0-15 for ints and 0-31 for dints. There can be up to 128 input and 128 output tags.

Inputs	<pre>## ; Size TBD in next</pre>	section
EthTag	DriveStatus_Ready	int[0].0
EthTag	DriveStatus_Active	int[0].1
EthTag	DriveStatus_CommandDir	int[0].2
EthTag	DriveStatus_ActualDir	int[0].3
EthTag	DriveStatus_Accelerating	int[0].4
EthTag	DriveStatus_Decelerating	int[0].5
EthTag	DriveStatus_Alarm	int[0].6
EthTag	DriveStatus_Faulted	int[0].7
EthTag	DriveStatus_AtSpeed	int[0].8
EthTag	DriveStatus_Manual0	int[0].9
EthTag	DriveStatus Manual1	int[0].10
EthTag	DriveStatus Manual2	int[0].11
EthTag	DriveStatus_SpdRefBit0	int[0].12
EthTag	DriveStatus_SpdRefBit1	int[0].13
EthTag	DriveStatus_SpdRefBit2	int[0].14
EthTag	DriveStatus_SpdRefBit3	int[0].15
EthTag	Feedback	int[1]
EndInpu	uts	

Important: The data type for Feedback might be dint or real.

The Output tag list begins with the keyword Outputs followed by the size of the tag list *including overhead*. Determining size is discussed in the next section. The list ends with the keyword EndOutputs.

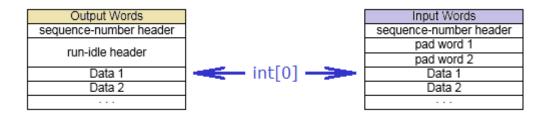
Outputs ## ; Size TBD in nex	t section
EthTag LogicCommand_Stop	int[0].0
EthTag LogicCommand_Start	int[0].1
EthTag LogicCommand_Jog	int[0].2
EthTag LogicCommand_ClearFault	s int[0].3
EthTag LogicCommand Forward	int[0].4
EthTag LogicCommand_Reverse	int[0].5
EthTag LogicCommand Manual	int[0].6
EthTag LogicCommand Increment	int[0].7
EthTag LogicCommand_AccelRate0	int[0].8
EthTag LogicCommand_AccelRate1	int[0].9
EthTag LogicCommand_DecelRate0	int[0].10
EthTag LogicCommand DecelRate1	int[0].11
EthTag LogicCommand SpdRefSel0	int[0].12
EthTag LogicCommand_SpdRefSel1	int[0].13
EthTag LogicCommand_SpdRefSel2	int[0].14
EthTag LogicCommand Decrement	int[0].15
EthTag Reference	int[1]
EndOutputs	

Important: The data type for Reference might be dint or real.

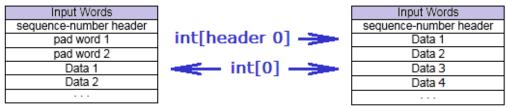
The default drive data offset is a 16-bit word. The offset can instead be expressed as a BYTE, DINT or REAL by prefacing the offset value. Tag0 is a 16-bit int read from int 1 of the Ethernet data table

EthTag Tag0 int[1]

Tag1 is a 16-bit int read from bytes 1 and 2 of the Ethernet data table. EthTag Tag1 int[BYTE 1]


Tag2 is a 32-bit dint read from ints 3 and 4 of the Ethernet data table EthTag Tag2 dint[INT 3]

Please note for non-Allen-Bradley drives:


CIP messages contain additional header data (3 words output, 1 word input). Allen-Bradley drives include pad words in their input data.

EthTag tag int[**0**] references the first word after the headers and pad words.

Other manufacturers' drives may have no input pad words and may store usable data before int[0]. For these drives, use the keyword **header** to force the AN-X2 to read the first two words of data immediately after the header.

drives without pad words

Allen-Bradley drives with pad words

For drives without pad words:

EthTag I	'agl	int[header	0].0	;	Data	1 bit0,	no	pad
EthTag I	lag2	<pre>int[header</pre>	0].1	;	Data	1 bit1,	no	pad
EthTag I	lag3	<pre>int[header</pre>	1]	;	Data	2,	no	pad
EthTag I	lag4	int[0]		;	Data	3,	no	pad
EthTag I	lag5	int[1]		;	Data	4,	no	pad

header is applied only to the Input tags as necessary. header will not apply to Output tags.

3.3.7 Determine Inputs and Outputs Sizes

Consult the drive manual for the size of your drive's EIP data. It might look like the following:

Table 5.B ControlLogix Controller I/O Image for Drives with 16-bit Reference/ Feedback and 32-bit Datalinks - Using Generic Profile

	0.1		1
Word	Output I/O	Word	Input I/O
0	Logic Command	0	Pad Word
1	Reference	1	Pad Word
2	Datalink In A1 (LSW)	2	Logic Status
3	Datalink In A1 (MSW)	3	Feedback
4	Datalink In A2 (LSW)	4	Datalink Out A1 (LSW)
5	Datalink In A2 (MSW)	5	Datalink Out A1 (MSW)
6	Datalink In B1 (LSW)	6	Datalink Out A2 (LSW)
7	Datalink In B1 (MSW)	7	Datalink Out A2 (MSW)
8	Datalink In B2 (LSW)	8	Datalink Out B1 (LSW)
9	Datalink In B2 (MSW)	9	Datalink Out B1 (MSW)
10	Datalink In C1 (LSW)	10	Datalink Out B2 (LSW)
11	Datalink In C1 (MSW)	11	Datalink Out B2 (MSW)
12	Datalink In C2 (LSW)	12	Datalink Out C1 (LSW)
13	Datalink In C2 (MSW)	13	Datalink Out C1 (MSW)
14	Datalink In D1 (LSW)	14	Datalink Out C2 (LSW)
15	Datalink In D1 (MSW)	15	Datalink Out C2 (MSW)
16	Datalink In D2 (LSW)	16	Datalink Out D1 (LSW)
17	Datalink In D2 (MSW)	17	Datalink Out D1 (MSW)

Table 4.B Drives with 16-bit Reference/Feedback and 32-bit Datalinks

These products include the following:

· PowerFlex 700 drives with vector control · PowerFlex Digital DC drives

•	PowerFlex	700L	drives	with	700	control	

Logic	Ref/Fdbk	Datalinks (32-bit)				User Configured Settings					
Command/ Status	(16-bit)			•		Size in	Words	[DDI I/O Cfg]	Par. 35 -	Par. 36 -	
otatuo		A	B	C	D	Input	Output		[M-S Input] [M-S	[M-S Output]	
~	~					4	2	0 0001	0 0001	0 0001	
~	~	~				8	6	0 0011	0 0011	0 0011	
~	~	•	~			12	10	0 0111	0 0111	0 0111	
~	~	•	~	~		16	14	0 1111	0 1111	0 1111	
~	~	~	~	~	~	20	18	1 1111	1 1111	1 1111	

Find the length of the input and output data for your drive.

The length of the Input data in the Allen-Bradley table above also includes two Input pad words (4 bytes). Other manufacturers' drives might have no input pad data.

Important: Allen-Bradley Datalinks allow the transfer of additional drive data. In the table above, each Datalink contains two tags. Datalink A contains tags A1 and A2. For this drive, you must count the size of the entire two-tag datalink, even if you use only one of the two tags.

Input and output sizes can be found in the drive's EDS file. Choose the appropriate sizes for your Assembly Instances (O_T_ConnPt, T O ConnPt, selected in section 3.3.1).

[Assembly] Revision = 2; Drive EDS file Assem100 = "Input Data", 8, 0x0001, 64,; Assem112 = "Output Data", 8,) 00001, ,, 64,;

When Datalinks are available, multiple sizes may be listed. Select the sizes appropriate for the number of Datalinks enabled in the drive. (Status, Command, Feedback, Reference and Datalinks are all 4-bytes in this EDS.)

CIP messages contain additional header data that must also be counted in the input and output size:

- 2 bytes overhead for sequence-number (output and input).
- 4 bytes overhead for run-idle (output).

Output Words	Input Words	
sequence-number header	sequence-number header]
run-idle header	pad word 1	Input Words
Tun-lule neader	pad word 2	sequence-number header
Data 1	Data 1	Data 1
Data 2	Data 2	Data 2

with pad data

without pad data

To determine the size of the EIP Inputs and Outputs, add the data byte counts together with any overhead byte counts.

4-bytes data (2-byte Logic Command, 2-byte Speed Reference) plus 6 bytes (overhead) equals 10 bytes of Output.

Outputs **10** EthTag LogicCommand int[0] EthTag Reference int[1] EndInputs

For an Allen-Bradley drive with pad words:

8-bytes data (2-byte Drive Status, 2-byte Speed Feedback, 4-bytes pad words) plus 2 bytes (overhead) equals 10 bytes of Input.

Inputs **10** EthTag DriveStatus int[0] EthTag Feedback int[1] EndInputs

For a drive without pad words:

4-bytes data (2-byte Drive Status, 2-byte Speed Feedback) plus 2 bytes (overhead) equals 6 bytes of Input.

```
Inputs 6
EthTag DriveStatus int[header 0]
EthTag Feedback int[header 1]
EndInputs
```

3.4 Configure RIO Definition File

The RioDef file defines the tag mapping from Ethernet to RIO, scaling the tags as needed. A semi-colon ";" indicates a comment. Any text following a semi-colon is ignored by the AN-X2.

The configuration files are best edited in Notepad. The filename can be changed, but must match the name used in main.csv. The file extension must remain .csv.

RioDef.csv:

```
; ------
; RIO configuration file
; maps drive Ethernet tags to RIO, scaled as necessary
; --------
Inputs
I:0.0 <- DriveStatus_tag00
I:0.1 <- DriveStatus_tag01
I:1 <- Feedback * ##.##
EndInputs
Outputs
Output
```

The I/O group is relative to the start of the rack to which the template is applied. If the rack is defined as a last quarter rack, and the input is I/O group 0, then I/O group 6 is used in the rack.

Rack, Oo	01, 4	4, 4	; rac	k numl	per 1	, last	t quai	rter
I:0 <- T	ag1							
Quarter		1		2		3	2	4
I/O group	0	1	2	3	4	5	6	7

Multiple drives defined at different starting remote I/O addresses can use the same RioDef.csv file. If a second drive's rack is defined as the third quarter rack, and the input is I/O group 0, then I/O group 4 is used in the rack

Rack, 00 I:0 <- 5		3, 3	; rac	k numb	per 1	, thi	rd qua	arter
Quarter		1		2		3	4	4
I/O group	0	1	2	3	4	5	6	7

If you make changes in RioDef.csv, all drives using the file will see those changes (after restarting the AN-X2).

3.4.1 Define RIO Inputs

Map the desired EthDef tags to RIO inputs.

It is not necessary to map all the EthDef tags. You may map just the tags you wish to use. You may map the tags to anywhere in your rack.

Important: Do not to map more than one Ethernet input to the same remote I/O input. The AN-X2 will allow this, but both mappings will be active and overwrite one another.

Inputs

I:0.0 <- DriveStatus Ready I:0.1 <- DriveStatus Active I:0.2 <- DriveStatus CommandDir I:0.3 <- DriveStatus ActualDir I:0.4 <- DriveStatus Accelerating I:0.5 <- DriveStatus Decelerating I:0.6 <- DriveStatus Alarm I:0.7 <- DriveStatus Faulted I:0.10 <- DriveStatus AtSpeed I:0.11 <- DriveStatus Manual0 I:0.12 <- DriveStatus Manual1 I:0.13 <- DriveStatus Manual2 I:0.14 <- DriveStatus SpdRefBit0 I:0.15 <- DriveStatus SpdRefBit1 I:0.16 <- DriveStatus SpdRefBit2 I:0.17 <- DriveStatus SpdRefBit3 I:1.0 <- Feedback EndInputs

Mapping begins with the keyword Inputs and ends with EndInputs. Mappings consist of the input word or bit address, space(s), the symbol <-, space(s), and the Ethernet tag name from the EthDef file. Word addresses are I:n, where n is the I/O group, from 0 to 7. Bit addresses are I:n.b, where b is the bit number, from 0 to 17 octal.

If the input data type is REAL, the AN-X2 rounds the fraction and writes into the integer I:. 59.52 becomes 60. 59.48 becomes 59.

For bit mappings, the AN-X can flip a bit when it copies the data. Replace the dash in the assignment operator <- with a \sim .

I:2.1 <~ Ready

If Ready contains 1, then 0 will be written to I:2.1.

3.4.2 Define RIO Outputs

Map the desired RIO outputs to EthDef tags.

It is not necessary to map all the EthDef tags. You may map just the tags you wish to use.

Important: Do not to map more than one remote I/O output to the same Ethernet output. The AN-X2 will allow this, but both mappings will be active and overwrite one another.

Outputs

-		
0:0.0	->	LogicCommand_Stop
0:0.1	->	LogicCommand_Start
0:0.2	->	LogicCommand_Jog
0:0.3	->	LogicCommand_ClearFaults
0:0.4	->	LogicCommand Forward
0:0.5	->	LogicCommand_Reverse
0:0.6	->	LogicCommand_Manual
0:0.7	->	LogicCommand_Increment
0:0.10	->	LogicCommand AccelRate0
0:0.11	->	LogicCommand_AccelRate1
0:0.12	->	LogicCommand_DecelRate0
0:0.13	->	LogicCommand_DecelRate1
0:0.14	->	LogicCommand SpdRefSel0
0:0.15	->	LogicCommand_SpdRefSel1
0:0.16	->	LogicCommand_SpdRefSel2
0:0.17	->	LogicCommand_Decrement
0:1.0	->	Reference
EndOutr	outs	3

Mapping begins with the keyword Outputs and ends with EndOutputs. Mappings consist of the output word or bit address, space, the symbol ->, space, and the Ethernet tag name from the EthDef file. Word addresses are O:n, where n is the I/O group, from 0 to 7. Bit addresses are O:n.b, where b is the bit number, from 0 to 17 octal.

If the output data type is REAL, the AN-X2 writes the integer O: value into the REAL. 60 becomes 60.00.

For bit mappings, the AN-X can flip a bit when it copies the data. Replace the dash in the assignment operator -> with a \sim .

```
0:2.0 ~> Halt
```

If 0:2.0 contains 1, then 0 will be written to Halt.

3.4.3 Scale Inputs/Outputs As Needed

Important: It is essential that you thoroughly understand the nature of the data being passed and the range of values for the remote I/O data and the allowed range of values for the target Ethernet drive.

Important: The AN-X does not perform any checking on scaled data out of range. We strongly recommend that, wherever possible, you perform scaling in the Ethernet drive rather than in the AN-X.

For output words, the scaling is appended to the remote I/O address.

0:2 * 9 / 17 -> Speed	; int or dint data type
0:3 * 1.7e3 -> Torque	; real data type

For input words, the scaling is appended to the Ethernet tag name.

I:2 <- Position * 15 / 79 ; int or dint data type
I:3 <- Feedback * 0.33 ; real data type</pre>

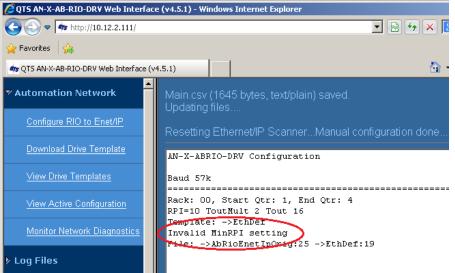
Leave a space between the tag name and scaling parameters for input scaling

Acceptable scaling values depend on the drive tag data type. Refer to the drive's EthDef file for tag type.

- For data type int and dint, the scaling can contain an integer multiplier, divisor or combination of both.
- For data type real, the scaling must be a single floating point multiplier.

Example: In the drive, speed Feedback is a real value with a range of 0-60 Hz. To represent Feedback as a 16-bit value in the PLC with a range 0-32767:

I:1 <- Feedback * 546.12 ; (32767 / 60)


To convert speed Reference in the PLC 0-32767, to real Speed in the drive 0-60 Hz:

0:1 * 0.001831 -> Reference ; (60 / 32767)

3.5 Download Configured Files to the AN-X2

Open a web-browser and enter the current AN-X2 IP in the browser address.

Important: When executing the following steps, note any errors that might appear in the text window. For example:

3.5.1 Download EtherNet/IP Definition File

Select *Download Drive Template* again, browse to the EtherNet/IP definition file and *Send File to AN-X*. Note and correct any errors in the response text window.

3.5.2 Download RIO Definition File

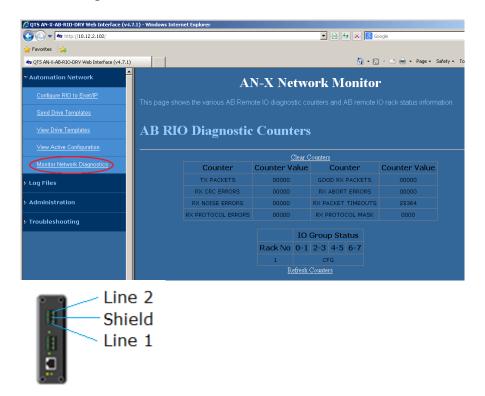
Select *Download Drive Template* in the *Automation Network* menus on the left. Browse to the RIO definition file and *Send File to AN-X*. Note and correct any errors in the response text window.

3.5.3 Download Main Definition File

Select *Configure RIO to Enet/IP* in the *Automation Network* menus on the left. Browse to the Main definition file and *Send File to AN-X*. Note and correct any errors in the response text window.

3.5.4 Restart the AN-X2

Changes will take effect after restarting the AN-X2. Select *Restart AN-X Module* in the *Administration* menus on the left. Browse to the Main definition file and *Send File to AN-X*. Select *Restart Now*.


🖉 QT5 AN-X-AB-RIO-DRV Web Interfac	e (v4.5.1) - Windows Internet Explorer
	💌 😒 🍫 🗙 🛽 Google
🙀 Favorites 🛛 👍	
or QTS AN-X-AB-RIO-DRV Web Interface (v	(4.5.1) 🐴 🗸 🗔 🗸 🖃 👘 🕶 Page + Safety + Tools + 🔞
> Automation Network	
≻ Log Files	AN-X Module Restart
▼ Administration	To restart the AN-X module hit the 'Restart Now' link.
AN-X Configuration	<u>Restart Now</u>
Archive Configuration	Warning : Hitting the 'Restart Now' link will cause the AN-X module to restart. All communications with automation networks, HMI stations or PLC racks will be interrupted.
<u>Update AN-X Firmware</u>	networks, first stations of FLC facks will be milerrupted.
Restart AN-X Module	
- Housies nooting	

3.6 Share EthDef.csv

If you have created a new drive EthDef.csv file, please share the tested file with ProSoft Technical Support. Include the drive model.

4 Appendix: Things to check

If Monitor Network Diagnostics shows no RIO communications, try swapping the RIO wires. When you move the RIO connector from the old drive to the AN-X2, you might need to swap Lines 1 and 2.

Verify the drive keying. If you're using a pre-configured drive template, the drive version may have changed. Check the keying in RSLinx and edit the EthDef file. (Section 3.3.2)

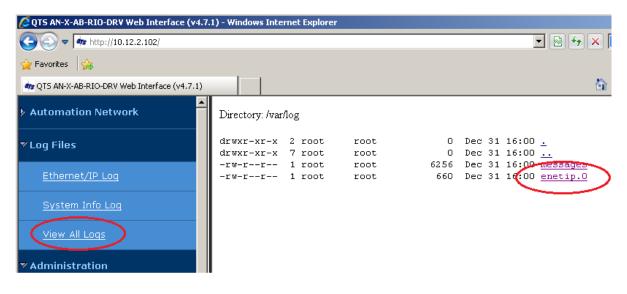
Verify the data type for Reference and Feedback. These might be int, dint or real. EthTag Feedback **real**[1]

If using data types dint or real, increment the subsequent tag location by 2 ints.

EthTag Feedback	real[1]
EthTag DataLink1	<pre>real[3] ;increment by 2</pre>
EthTag DataLink2	<pre>real[5] ;increment by 2</pre>

If you made changes to the EthDef or RioDef files, remember to also resend the Main file.

Edit or verify your files with a text editor. MS Excel can introduce quotation marks "" that will create errors in the AN-X2.

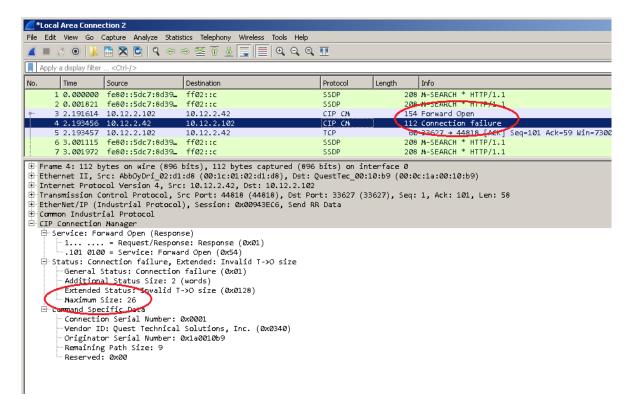

5 Appendix: Wireshark

Wireshark software is a network protocol analyzer available at wireshark.org. Wireshark can be an invaluable aid in determining your EIP configuration.

To capture all the network traffic, your network switch must capable of port mirroring. (A hub would also work, though not recommended long-term.)

Example:

The AN-X2 LEDs indicate an error and the enetip.0 log records a Forward Open error.


enetip.0

00:44.378 606 :CIP: Forward Open Request [Cip=0 10.12.2.42] 00:44.383 516 :Forward Open Response Error: 01 [Cip=0 10.12.2.42] 00:44.384 317 :GenSts=01 00:44.385 020 :ExtSts=0128 00:44.385 655 :Unknown Extended Status

Consulting an online reference shows:

General Status Error 0x01
Extended Status Error 0x0128
Invalid Target to Originator Size
This error is returned when the Target to Originator (Input data) size specified in the Forward
Open does not match what is in Target.

A Wireshark capture also reveals the Forward Open error. Drilling down through the details we find the input size is 26.

Modifying EthDef.csv, Inputs to 26 corrects the Forward Open error.

Inputs **26** EthTag . . . EthTag EndInputs

ProSoft Technology 9201 Camino Media, Suite 200 Bakersfield, CA 93311 +1 (661) 716-5100 +1 (661) 716-5101 (Fax) http://www.prosoft-technology.com

Copyright © ProSoft Technology Incorporated 2016. All Rights Reserved. All ProSoft Technology® products are backed with unlimited technical support.

ProSoft Technology ® is a Registered Trademark of ProSoft Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products and services of, their respective owners.