Quest Technical Solutions Inc.

P.O.Box 71

Heidelberg Ontario Canada

519) 699-5886 Fax (519) 699-5321 Author: Jim Stewart
Revision: 1.02

AN-X PBS Driver Development Document

Confidential Page 1 of 6 2/9/04
Copyright 2003, Quest Technical Solutions Inc..

Reproduction of the contents of this document, in whole or in part, without written permission of Quest
Technical Solutions Inc. is strictly prohibited.



1. Introduction

The AN-X Profibus Multislave (PBM) platform consists of several different
pieces of hardware, firmware and software. Additionally, the AN-X platform
provides several different utilities to aid in system construction.

This document is provided to supply the information on the PBM
functionality; the common AN-X functions are documented elsewhere.

The AN-X Profibus Multislave Development software contains an example
application that configures and monitors a Profibus DP network. The
reader should fine the source code for this application (pbmslv) to be a
very valuable companion to this documentation — reading C source code
required.

1.1 PBM Platform Overview

The PBM platform consists of the following components:

- Hardware Configuration: FPGA configuration file that provides the
Profibus slave hardware services. This is loaded using the /
etc/rc.d/initanx.20anxapp start-up script.

« PBM Kernel Module: pbsdrv.o interfaces directly to the Profibus slave
hardware and provides a basic DP multislave firmware module.

+ User Software Application: This is not currently provided in the
development platform. An example application is provided (pbmslv), but
it is only a monitoring application. The developer will have to provide a
useful user application.

The basic idea of the PBM platform is to provide a system that can have up
to a total of 124 monitored and/or virtual slaves. A “monitored slave” is
used to eavesdrop on a real physical slave and therefore does not transmit
any traffic on the network. A “virtual slave” is used to provide an emulated
DP slave to the Profibus Master. Virtual slaves look like real physical DP
slaves on the network and respond (transmit) packets back to the master.

1.2 Multislave Hardware Memory

The FPGA configuration for the AN-X device is comprised of two memory
areas — PGA registers and shared DRAM. The PGA registers are held in
memory inside the FPGA and are used to control the operation of the
multislave hardware services. The shared DRAM memory is a reserved 1 MB
memory area at the top of physical RAM. It is not used by the OS and is
shared between the multislave hardware (FPGA) and the kernel mode driver
and/or user applications.

The AN-X platform has a PGA kernel mode driver that can provide a user
mode application with a “memory mapped” pointer to the shared DRAM
and PGA register memory (more details are provided later in this
document).

The multislave hardware memory layout is defined in the tables to follow:

Confidential Page 2 of 6 2/9/04
Copyright 2003, Quest Technical Solutions Inc..

Reproduction of the contents of this document, in whole or in part, without written permission of Quest
Technical Solutions Inc. is strictly prohibited.



PGA Register Offset

Register Description

0x0000 LedCtl — controls the network LED

0x0004 PbsCtl — start or stop network and clear
counters

0x0008 RxTnsHead - points to transaction buffer head

0x000C-0x000F Reserved

0x0010 TxGood — number of good Tx packets (16 bit)

0x0012 RxGood — number of good Rx packets (16 bit)

0x0014 RxStpErr — stop bit error in received octet.

0x0015 RxParErr — parity error in received octet

0x0016 RxSdErr — start delimiter error in received
packet

0x0017 RxRptErr

0x0018 RxUndErr - received packet too short

0x0019 RxFcsErr — checksum error in received packet

0x001a RxEdErr - stop delimiter error in received
packet

0x001b RxOvrErr - received packet too long

0x001c RxFitNde

0x001d RxFitSap

0x001e RxDupFrm

0x001f RxTnsOvr - transaction buffer over flow

0x0020-0x03ff
0x0400-0x05ff

0x0600-0x07ff
0x0800-0x0bff

Reserved

NodeCtl - set monitored, virtual or ignored state
of slaves (one byte register for each slave
address)

Reserved

WdogTime - set the DP watchdog timeout (in
ms) for each slave (one 32 bit register for each
slave address)

Table 1 PGA Register Memory Layout

The PGA register space is a 64 kB address space and the register offsets
show in the table above are addressed from the base memory pointer
returned by the PGA kernel module.

Confidential

Page 3 of 6 2/9/04

Copyright 2003, Quest Technical Solutions Inc..
Reproduction of the contents of this document, in whole or in part, without written permission of Quest
Technical Solutions Inc. is strictly prohibited.



Shared DRAM Offset Area Description

0x00000-0x3ffff PBS_CTL structures — arranged as a 3
dimensional array of PBS_CTL structures
([node][SAP][req_res])

0x40000-0x4ffff PBS_RX_TNS structures — transaction based
receive buffers.
0x50000-0x50fff PBS_CTL default SAP structures — area used for

the DP data exchange's default SAP. Two
dimensional array of structures ([node]

[req_res])
0x51000-0x7ffff Reserved
0x80000-0xbffff RxBuf - received data buffers. All data (not the

layer 2 frame information) from received
packets are put into this area.

0xc0000-0xfffff TxBuf — transmit data buffers. All data (not the
layer 2 frame information) to be sent out on the
network comes from this area.

Table 2 Multislave Shared DRAM Memory Layout

The detailed definition of all the multislave hardware structures is
contained in the anxpbslave.h header file.

The shared DRAM memory layout can be complex, in large part, this is due
to the fact that both monitored and virtual slave devices are supported. The
complexity of this memory area is handled by services provided by the PBM
kernel module (see section, below).

The most import part of the shared DRAM memory layout is the RxBuf and
TxBuf. These areas contain the DP diagnostics, configuration, parameter,
input and output data areas.

2. PBM Kernel Module

The PBM kernel module interfaces with the AN-X multislave FPGA by
handling hardware interrupts, processing the virtual slave DP state
machine and offers configuration routines for the user space program. This
section is a detailed discussion of the various services provided by the PBM
kernel module.

2.1 DP Slave Configuration Services

As discussed earlier, the multislave hardware's shared memory interface
can be somewhat complex. The key to understanding how the memory
interface works is to remember how monitored slaves and virtual slaves
work and combine this knowledge with the requirements of the Profibus DP
protocol.

Profibus DP requires the following data areas:

« Diagnostics data

+ Parameter data

+ Check configuration data

+ Inputs

Confidential Page 4 of 6 2/9/04
Copyright 2003, Quest Technical Solutions Inc..

Reproduction of the contents of this document, in whole or in part, without written permission of Quest
Technical Solutions Inc. is strictly prohibited.



+ Outputs

The multislave shared memory interface (MSMI) is an OSI layer 2
implementation and therefore knows nothing of the DP protocol layers. The
multislave kernel module helps to organize, configure and handle the layer
2 services to produce a maximum of 124 (1 to 125) DP slave devices. The
tables to follow give a basic overview of how the MSMI is configured by the
multislave kernel module:

RxBuf Allocation (0x80000 MSMI offset)

Buffer Offset Area Description
0x00000-0x077ff Outputs — 30 kB block
0x07800-0x0efff Chk. Configuration — 30 kB block
0x0f000-0x0167ff Parameter data — 30 kB block
0x16800-0x1dfff Monitored Inputs - 30 kB block (from monitored
slaves)
0x1e000-0x257ff Monitored Diagnostic data - 30 kB block (from

monitored slaves)

Table 3 Rx Data Buffer Allocation for DP

TxBuf Allocation (0xc0000 MSMI offset)

Buffer Offset Area Description
0x00000-0x077ff Inputs — 30 kB block *only for virtual slaves
0x07800-0x0efff Chk. Configuration - 30 kB block *only for

virtual slaves
0x0f000-0x0167ff Dliagnostic data — 30 kB block *only for virtual
slaves

Table 4 Tx Buffer Allocation for DP

Any given user application must execute the following configuration steps:
1. Clear the current configuration (if any).

2. Set the basic network options (baud rate, tsdr, etc.).

3. For each required slave -- set monitored or virtual mode, size and offset
of all DP areas (diagnostic, parameters,configuration, ip and/or op).

4. Start the bus (go on-line).
5. When leaving the application, stop the bus (go off-line).

The pbmslv application gives an example of the required configuration
steps. The pbmslv_api.h header file provides all the structures and ioctl
defines required to perform a configuration cycle.

In Step 3 above, the user application defines the maximum size and most
importantly, the offset for each slave's data area in the predefined DP
areas. The specific placement of any slave's data areas inside the allocated
buffer spaces is left to the user application to allow the user to arrange data
according to the user application's requirements (may be grouped
contiguously or not...).

Confidential Page 5 of 6 2/9/04
Copyright 2003, Quest Technical Solutions Inc..

Reproduction of the contents of this document, in whole or in part, without written permission of Quest
Technical Solutions Inc. is strictly prohibited.



2.2 Runtime Operation

Again, the pbmslv application's source code is the best example of how to
use the PBM kernel module to interact with the MSMI. There are two basic
ways to access the data areas of the MSMI - using ioctl calls or a set of
memory mapped pointers.

The pbmslv application uses ioctl calls for most of the monitoring
functions. However, the pbmslv application does show code that initializes
two memory mapped pointers — one for the PGA registers and one for the
shared DRAM memory.

2.2.1. Memory Mapped Pointers

The AN-X platform provides a generic PGA kernel module (anxpga.o - /
dev/anxpga) that is used to retrieve information about the PGA's available
memory areas and memory mapping services. Note, the user must
remember that access to the MSMI via memory mapped pointers is not
atomic. Multiple threads or processes that access the MSMI can cause race
conditions and unpredictable data values - only one “writer” process or
thread is supported.

The user application can get a memory pointer to the PBS_REG structure
and the PBS_MEM structure (anxpbslave.h). These pointers are used to
access the MSMI memory areas directly from the user application.

The PBS_REG structure is very straight forward. For example, the following
C code will access the NodeCtl register for the slave at station address 10:

PgaRegPtr->NodeCtl[10]

The PBS_MEM structure is much more complex. A user application would
probably be best served by building a cache of data pointers at
configuration time. Specifically, when the slave DP data areas are
configured with the user defined offsets, a pointer to that slave's DP data
area can be stored:

offset = RxBufAreaOfs + UserOfs
Ptr = &pPbsMem->RxBuf[offset]
where;

RxBufAreaOfs — is the predefined offset for the area of interest (0x16800 for
monitored input data). See Table 3 Rx Data Buffer Allocation for DP for
details.

UserOfs — is the user defined offset into the area of interest.

2.2.2. Monitoring Slave Status

The source code for the pbmslv application contains a function
DisplayNodeList(). This function gives an example of how to get the status
of any slave:

if(pPbsMem->DefCtl[node_cfg.slv_node][PBS_REQUEST].StrtDelim) printf (" OK");

The slave status indicates whether the slave is in DATA_EXCHANGE mode
with the DP master. The value in StrtDelim will be 0x68 when in data
exchange mode and zero when not. A test for a non-zero value is sufficient
to indicate data exchange mode. This method is the same for virtual and
monitored slaves.

Confidential Page 6 of 6 2/9/04
Copyright 2003, Quest Technical Solutions Inc..

Reproduction of the contents of this document, in whole or in part, without written permission of Quest
Technical Solutions Inc. is strictly prohibited.



